快速了解學術期刊目錄級別、選刊、行業(yè)刊物等解決方案
對于現(xiàn)在半導體材料中的新應用管理方式主要表現(xiàn)在什么方面應該怎么來加強對材料的應用管理等等,文章對這些方面做了研究介紹。本文選自:《材料研究學報》,《材料研究學報》報道金屬材料,無機非金屬材料、有機高分子材料、復合材料以及材料科學的邊緣學科、交叉學科的最新研究成果,特別是國家自然科學基金資助項目的研究成果,刊登國內(nèi)外具有創(chuàng)新性和較高學術水平的關于材料,特別是高新材料的組成、結構、制備方法和性能的研究簡報、研究論文和評述論文。
摘要:目前,世界GaAs單晶的總年產(chǎn)量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發(fā)展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產(chǎn)線。InP具有比GaAs更優(yōu)越的高頻性能,發(fā)展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關鍵技術尚未完全突破,價格居高不下。
關鍵詞:半導體材料,材料應用,材料發(fā)展,材料論文
1半導體材料的戰(zhàn)略地位
上世紀中葉,單晶硅和半導體晶體管的發(fā)明及其硅集成電路的研制成功,導致了電子工業(yè)革命;上世紀70年代初石英光導纖維材料和GaAs激光器的發(fā)明,促進了光纖通信技術迅速發(fā)展并逐步形成了高新技術產(chǎn)業(yè),使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設計思想,使半導體器件的設計與制造從“雜質工程”發(fā)展到“能帶工程”。納米科學技術的發(fā)展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強大的新型器件與電路,必將深刻地影響著世界的政治、經(jīng)濟格局和軍事對抗的形式,徹底改變?nèi)藗兊纳罘绞健?/p>
2幾種主要半導體材料的發(fā)展現(xiàn)狀與趨勢
2.1硅材料
從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發(fā)展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現(xiàn)大規(guī)模工業(yè)生產(chǎn),基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術正處在由實驗室向工業(yè)生產(chǎn)轉變中。目前300mm,0.18μm工藝的硅ULSI生產(chǎn)線已經(jīng)投入生產(chǎn),300mm,0.13μm工藝生產(chǎn)線也將在2003年完成評估。18英寸重達414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發(fā)展的主流。另外,SOI材料,包括智能剝離(Smart cut)和SIMOX材料等也發(fā)展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發(fā)中。
理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應對現(xiàn)有器件特性影響所帶來的物理限制和光刻技術的限制問題,更重要的是將受硅、SiO2自身性質的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統(tǒng)集成芯片技術等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導體材料研發(fā)的重點。
2.2 GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優(yōu)勢。
GaAs和InP單晶的發(fā)展趨勢是:
(1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產(chǎn),預計本世紀初的頭幾年直徑為6英寸的SI-GaAs也將投入工業(yè)應用。
(2)。提高材料的電學和光學微區(qū)均勻性。
(3)。降低單晶的缺陷密度,特別是位錯。
(4)。GaAs和InP單晶的VGF生長技術發(fā)展很快,很有可能成為主流技術。
2.3半導體超晶格、量子阱材料
半導體超薄層微結構材料是基于先進生長技術(MBE,MOCVD)的新一代人工構造材料。它以全新的概念改變著光電子和微電子器件的設計思想,出現(xiàn)了“電學和光學特性可剪裁”為特征的新范疇,是新一代固態(tài)量子器件的基礎材料。
(1)Ⅲ-V族超晶格、量子阱材料。
GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應變補償材料體系已發(fā)展得相當成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質結雙極晶體管(HBT)的最高頻率fmax也已高達500GHz,HEMT邏輯電路研制也發(fā)展很快;谏鲜霾牧象w系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發(fā)光二極管和紅光激光器以及大功率半導體量子阱激光器已商品化;表面光發(fā)射器件和光雙穩(wěn)器件等也已達到或接近達到實用化水平。目前,研制高質量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調(diào)制器單片集成InP基多量子阱材料和超高速驅動電路所需的低維結構材料是解決光纖通信瓶頸問題的關鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準連續(xù)兆瓦級大功率激光陣列的高質量量子阱材料也受到人們的重視。
雖然常規(guī)量子阱結構端面發(fā)射激光器是目前光電子領域占統(tǒng)治地位的有源器件,但由于其有源區(qū)極薄(~0.01μm)端面光電災變損傷,大電流電熱燒毀和光束質量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區(qū)量子級聯(lián)耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nm InGaAs帶間量子級聯(lián)激光器,輸出功率達5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準連續(xù)輸出功率超過10瓦好結果。最近,我國的科研工作者又提出并開展了多有源區(qū)縱向光耦合垂直腔面發(fā)射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質量的新型激光器,在未來光通信、光互聯(lián)與光電信息處理方面有著良好的應用前景。
為克服PN結半導體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發(fā)明了基于量子阱內(nèi)子帶躍遷和阱間共振隧穿的量子級聯(lián)激光器,突破了半導體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯(lián)激光器(QCLs)發(fā)明以來,Bell實驗室等的科學家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進展。2001年瑞士Neuchatel大學的科學家采用雙聲子共振和三量子阱有源區(qū)結構使波長為9.1μm的QCLs的工作溫度高達312K,連續(xù)輸出功率3mW.量子級聯(lián)激光器的工作波長已覆蓋近紅外到遠紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調(diào)制器和無線光學連接等方面顯示出重要的應用前景。中科院上海微系統(tǒng)和信息技術研究所于1999年研制成功120K 5μm和250K 8μm的量子級聯(lián)激光器;中科院半導體研究所于2000年又研制成功3.7μm室溫準連續(xù)應變補償量子級聯(lián)激光器,使我國成為能研制這類高質量激光器材料為數(shù)不多的幾個國家之一。
目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結構材料發(fā)展的主流方向,正從直徑3英寸向4英寸過渡;生產(chǎn)型的MBE和M0CVD設備已研制成功并投入使用,每臺年生產(chǎn)能力可高達3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的Picogiga MBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產(chǎn)型MBE和MOCVD設備的成熟與應用,必然促進襯底材料設備和材料評價技術的發(fā)展。
(2)硅基應變異質結構材料。
硅基光、電器件集成一直是人們所追求的目標。但由于硅是間接帶隙,如何提高硅基材料發(fā)光效率就成為一個亟待解決的問題。雖經(jīng)多年研究,但進展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結構,Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發(fā)光器件和有關納米硅的受激放大現(xiàn)象的報道,使人們看到了一線希望。
另一方面,GeSi/Si應變層超晶格材料,因其在新一代移動通信上的重要應用前景,而成為目前硅基材料研究的主流。Si/GeSi MODFET和MOSFET的最高截止頻率已達200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。
盡管GaAs/Si和InP/Si是實現(xiàn)光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數(shù)等不同造成的高密度失配位錯而導致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協(xié)變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進展。
2.4一維量子線、零維量子點半導體微結構材料
基于量子尺寸效應、量子干涉效應,量子隧穿效應和庫侖阻效應以及非線性光學效應等的低維半導體材料是一種人工構造(通過能帶工程實施)的新型半導體材料,是新一代微電子、光電子器件和電路的基礎。它的發(fā)展與應用,極有可能觸發(fā)新的技術革命。
目前低維半導體材料生長與制備主要集中在幾個比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進展。俄羅斯約飛技術物理所MBE小組,柏林的俄德聯(lián)合研制小組和中科院半導體所半導體材料科學重點實驗室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點激光器,工作波長lμm左右,單管室溫連續(xù)輸出功率高達3.6~4W.特別應當指出的是我國上述的MBE小組,2001年通過在高功率量子點激光器的有源區(qū)材料結構中引入應力緩解層,抑制了缺陷和位錯的產(chǎn)生,提高了量子點激光器的工作壽命,室溫下連續(xù)輸出功率為1W時工作壽命超過5000小時,這是大功率激光器的一個關鍵參數(shù),至今未見國外報道。
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報道了可在室溫工作的單電子開關器件,1998年Yauo等人采用0.25微米工藝技術實現(xiàn)了128Mb的單電子存貯器原型樣機的制造,這是在單電子器件在高密度存貯電路的應用方面邁出的關鍵一步。目前,基于量子點的自適應網(wǎng)絡計算機,單光子源和應用于量子計算的量子比特的構建等方面的研究也正在進行中。
與半導體超晶格和量子點結構的生長制備相比,高度有序的半導體量子線的制備技術難度較大。中科院半導體所半導體材料科學重點實驗室的MBE小組,在繼利用MBE技術和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結構的基礎上,對InAs/InAlAs量子線超晶格的空間自對準(垂直或斜對準)的物理起因和生長控制進行了研究,取得了較大進展。
王中林教授領導的喬治亞理工大學的材料科學與工程系和化學與生物化學系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發(fā)技術,成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現(xiàn)出高純、結構均勻和單晶體,幾乎無缺陷和位錯;納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達數(shù)毫米。這種半導體氧化物納米帶是一個理想的材料體系,可以用來研究載流子維度受限的輸運現(xiàn)象和基于它的功能器件制造。香港城市大學李述湯教授和瑞典隆德大學固體物理系納米中心的Lars Samuelson教授領導的小組,分別在SiO2/Si和InAs/InP半導體量子線超晶格結構的生長制各方面也取得了重要進展。
硬核推薦閱讀
SCIE、SSCI
SCI、SCIE
SCIE
SCIE、SCI
SCI、SCIE
SCI、SCIE
SCIE
SCIE
SCI、SCIE
SCIE
SCIE
SCIE